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Stochastic analog to phase transitions in chaotic coupled map lattices
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Stochastic dynamical systems are shown to exhibit the same order-disorder phase transitions that have been
found in chaotic map lattices. Phase diagrams are obtained for diffusively coupled two-dimerig@nal
lattices, using two stochastic maps and a chaotic one, for both square and triangular geometries, with simul-
taneous updating. We show how the use of triangular geometry redoceven eliminatésthe reentrant
behavior found in the phase diagrams for the square geometry. This is attributed to the elimiwiation
frustration of the antiferromagnetic clusters common to simultaneous updating of square lattices. We also
evaluate the critical exponents for the stochastic maps in the triangular lattices. The strong similarities in the
phase diagrams and the consistency between the critical exponents of one stochastic map and the chaotic one,
evaluated in an early work by Marat al. [Phys. Rev. Lett77, 4003(1996; Phys. Rev. E55, 2606(1997)]
suggest that the “sign-persistence,” defined as the probability that the local map keeps the sign of the local
variable in one iteration, plays a fundamental role in the presence of continuous phase transitions in coupled
map lattices, and is a basic ingredient for models that belong to this weak Ising universality. However, the fact
that the second stochastic map, which has an extremely simple local dynamics, seems to fall in the 2D Ising
universality class, suggests that some minimal local complexity is also needed to generate the specific corre-
lations that end up giving non-Ising critical behavior.
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I. INTRODUCTION value was found to be 0.88I8) [numbefs) between paren-
theses corresponds to the uncertainty in the last (digiff
The study of extended chaotic systems, defined by ernthe quantity, clearly differing from the Ising valuey=1).
sembles of interacting simple elements whose local dynamfhese results were obtained with simultaneous updating of
ics are chaotic, is one of the most exciting new areas inattice sites, while an asynchronous updating of the same
nonlinear dynamics. Within this field one of the problemsmodel recovered the critical exponents of the 2D Ising class.
that has been attracting much interest lately is the appearan&ecent evaluations of critical exponents on Toon cellular
of nontrivial collective behavior in coupled map lattices automata lattice$7] have also found non-Ising exponents,
(CMLs), beginning with the collective oscillations found by giving »=0.852), butwith discrepancies in the ratiog/ v
Chateand Manneville[2] in lattices of diffusively coupled andg/v with respect to both the 2D Ising model and the MH
cellular automata. CMLs are the simplest models for thdattice model.
study of spatiotemporal chaos, and can be used to simulate It seems obvious that for this order-disorder PT, the dif-
the cooperative behavior found in many biological, compu-fusive coupling is the factor that gives the global order, while
tational, physical, chemical, and even social syst¢Bls the chaotic local evolution provides for the disorder. In a
Some types of chaotic CMLs present order-disorder transisense, one takes the diffusion as analogous to the ferromag-
tions with the same phenomenology found in continuoushetic coupling in an Ising model, while the local chaos acts
phase transitiongPTs in equilibrium statistical mechanics. as a source of “thermal fluctuations(a temperatune The
In particular, a very interesting example was found by Miller picture however, is not really as simple. Maps that are simi-
and Huse(MH) [4], for two-dimensional(2D) lattices of |ar to that used by Miller and Huse may or may not present
odd-symmetric piecewise-linear chaotic maps, with diffusivecontinuous PT41,8,9, and moreover, two different maps
coupling. These transitions occur between two globally chawith the same local Lyapunov exponeig., with the same
otic states, and the largest Lyapunov exponent remains comtegree of chaoticitypresent different critical poin{®]. It is
tinuous in the critical poinf5]. The symmetry and dimen- clear, therefore, that an extra factor is needed to understand
sionality of the local maps are those of the Ising model, andhe origin of these PTs. Looking again to the MH dynamics,
using very general arguments, an Ising-like behavior wasne finds that two of its fundamental characteristics are that
expected6]. In fact, this order-disorder PT was initially lo- it has a uniform invariant distribution, and that it shows a
cated in the 2D Ising universality class, but extensive calcutendency for the local variable to keep its sign under itera-
lations for this and similar mode[d] indicate that the tran- tion. Following this lead, in this work we show an alternative
sition does not fit entirely there, the main difference being inway of studying local dynamics that gives continuous PTs in
the critical exponent for the correlation length)( whose  diffusive lattices, by making them completely stochastic,
preserving the mentioned behavior. Specifically, we use sto-
chastic processes with uniform invariant distributions, and
*Electronic address: sastre@kin.cieamer.conacyt.mx with a certain probability that the local variable keeps the
"Electronic address: gperez@kin.cieamer.conacyt.mx same sign in the next time iteration. We call this quantity the
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sign-persistencef the map. We then implement numerical pects of a diffusive system, since after all the coupling is
simulations of the CMLs with local stochastic maps, our goalintended to be of a ferromagnetic nature, and is assumed to
being to compare both systerfdeterministic and stochastic homogenize the state of the lattice. We will put these effects
in order to check how close to each other their behaviors arén the context of a reentrance behavior found for both the
in other words, to see if they fall in the same universalitychaotic and the stochastic models. We will show that the
class. We made this comparison through the construction aftroduction of frustration, via the use of triangular lattices,
the phase diagram for three CMLs, one chaotic, named theeduces reentrance and even eliminates it completely for one
generalized Miller-HusgGMH) map, and two stochastic, case.
named threshold and density maps, and the evaluation of This article is organized as follows. In Sec. Il we give the
critical exponents for the stochastic mafise critical expo-  definitions of the two stochastic maps, we also give the defi-
nents for the MH map and similar models were evaluated imitions of the equivalent thermodynamics variables. These
Ref.[1]). Here we implement finite-size scalif§S9 analy- are the same ones given in previous wark®|. In Sec. llI
sis of the results in the standard way used in equilibriumwe present the phase diagrams for square and triangular lat-
statistical mechanics. tices in the GMH, threshold, and density maps. Section IV is
Additionally, we want to cover two additional details in dedicated to FSS and the results of the critical exponents for
the behavior of the MH model, details that were pointed outhe stochastic maps. In Sec. V we discuss our results.
originally by Marcqet al.[1]. First, after growing from zero
on crossing the critical coupling, the order parameter starts to Il. MODELS AND DEEINITIONS
decrease as the coupling approaches its maximum value of 1,
and second, antiferromagnetic looking domains appear in the In a previous work[9] we introduced ageneralized
lattice. These two features go clearly against what one exMiller-Huse map

2yl(a—1)+(a+1)/(a—1) for —-1lsy=-—a,
d(y)=1 yla for —a<y<a, (2.1
2yl(a—1)—(a+1)/(a—1) for —-1l<sy<-—aq,

from where one gets the MH map setting- 1/3. This fam- 1 . € .
ily of maps has uniform invariant distributions, and the sign yr =(A-edly)+ - > by (2.9
persistence can be easily evaluated, giving N’

1+a
p=T. (2.2 here r indicates position in the lattice, is the iteration

counter(the discrete timg (r') indicates sum over nearest
neighbors N,, is the number of nearest neighbors, ah@/)

is the local magGMH, threshold, or densily This gives us
the desired simultaneous updating of all lattice sites. The
instantaneous order parametay is defined by

The first stochastic map introduced, ttlgeshold mapis
closely related to the GMH map and is defined by

sgniy)r for |y|<p,
¢(Y)=\ —sgriy)r for |y|>p, 2.3

where the sign persistengeis the internal parameter, amd

is a uniformly distributed random number withi,1]. Fig-

ure 1 shows the GMH and the threshold maps with the same
value ofp. The second stochastic map used,dkasity map

is defined by

#(y)

sgny)r with probability p,
#(Y)=\ —sgr(y)r with probability 1-p, (24

where we have assigned directly the sign persistence in the
dynamics(see Fig. 2

The 2D coupled system was implemented using the dis- FIG. 1. GMH (solid line) and threshold maygpoints. In both
crete evolution rule given by cases we havp=0.825.
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FIG. 3. Phase diagram for square lattices. Filled marks and dot-

FIG. 2. Density map witlp=0.825. ted line are for the threshold map; open marks and solid line are for
the GMH map. In both systems a reentrance can be observed for
. 1 . large values of the coupling. Lines are splines for visualization.
mL:N > Yrs (2.6
r . . .
phase diagrams is such that one is tempted to assert that the
whereN=L2 is the number of lattice sites, and the sum isdeterministic nature of the MH map is irrelevant for its col-

over all lattice sites. The order parameter is obtained by taklective behavior: all that matters is the distribution of signs it
ing, after letting a suitable transient time pass, the time ay9iVes On iteration. However, results obtained for the density
erage of the last quantity map indicate that this would be an oversimplification, as will

be discussed in the conclusions. The region where this coin-
1T cidence is lost is that of very largevalues, where we can go
M ={(m_ )= T E [mt(L)|. (2.7 from a disordered phase to an ordered one, and then back to
t=1 . . .
a disordered phase, as we increas&Ve also observe this
behavior in the phase diagram for the density nfaig. 4),
although the ordered phase appears for larger valugs of
This reentrance seems to be due to the development of small
XL=N<(|th|—ML)2>- (2.9 antiferromagnetic domains, as can be observed in Fig. 5,
where we show snapshots for three poifise for each re-
Finally, for the evaluation of critical points and other uses,gion, with L=48) for the threshold map. One can clearly

HereT is the time interval over which the average is taken.
The susceptibility used in this work is defined by

we also compute the fourth order cumulgh@] observe the presence of antiferromagnetic domains in the
second and third snapshots. A similar behavior is observed in

M(._4) the GMH map. This means then that already in the ordered

L=1- 3(M—(L2))2 (2.9 phase some antiferromagnetic clustering starts to develop,

and that this phenomenon becomes so prevalent that it de-
WhereM(L”)=<mE). As the control parametdthe coupling stroys the ferromagnetic order. It is important to remark that
parameter, the sign persistence, or a combination of both

quantitie$ tends to a critical point, one finds that(L) L P OGN

—U*, whereU* is independent of the size of the system. C i M0 ]

This gives a good estimator for the critical points, just by 0.8 - ., 7

getting the crossing point for different lattice sizes. We will C R ]

discuss more about cumulant properties in Sec. IV. 06 .. I

oo .

Ill. PHASE DIAGRAMS AND REENTRANCES 04 - " ]

C M=0 e ]

We begin by computing the complete phase diagrams for 0.2 [ ._

the GMH and the threshold maps, in square lattices, as a Tt

function of the couplinge and the sign persistenqe We ol v v i .

worked with relatively small latticesup to L =40), which 0.9 0.95 1
gave us a good relation between accuracy and computational p

cost. These phase diagrams are shown in Fig. 3, and their

almost exact coincidence for most of the parameter space is F|G. 4. Phase diagram for the density map in square lattices. A

evident, substantiating our assertion that a fundamental fagehavior analogous to that of the GMH and threshold maps can be
tor for the appearance of MH-type PTs in diffusive chaoticobserved. In this case the phase transition is present for large values
lattices is the sign persistence. In fact, the coincidence in thef p.
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FIG. 6. Phase diagram for triangular lattices. Filled marks and
mu| dotted line are for the threshold map; open marks and solid line are
(a) for the GMH map. The reentrance disappears for the threshold map,
and almost disappears for the GMH map. Lines are splines for

visualization. The arrow shows the line along which the critical
exponents were evaluated.

for the systems considered here a fully developed antiferro-
magnetic phase has not been found. These antiferromagnetic
clusters crop in other ferromagnetic models, when simulta-
neously updatefiL1]; a fascinating anecdotical report of this
problem was given recently by Haygg2].

In a similar way to what happens in the Ising and other
equilibrium models, one can discourage the appearance of
antiferromagnetic behavior via frustration. To see what effect
this has on the reentrance, we have calculated the phase dia-
grams for the three maps in triangular lattices. The results
obtained are shown in Figs. 6 and 7, where we can observe
that, as expected, the reentrance disappears for the threshold
map (snapshots for this system are shown in Fig.There is
a very significant reduction of the reentrance in the GMH
and the density maps. Again, we get almost perfect coinci-
dence in the phase boundary between the GMH and the
threshold maps, except for the high coupling region. As is
g & normal with an increase on the coordination of the lattice,

gae
1 L : T I T T T T I T T T T ]
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FIG. 5. Snapshots for the threshold map wlitk 48 in square
lattices for (a) disordered phasee&0.6), (b) ordered phase and FIG. 7. Phase diagram for the density map in triangular lattices.
(e=0.875) and(c) second disordered phase=0.975). We can A behavior analogous to that of the GMH and threshold maps can
observe that small antiferromagnetic domains begin to appear in thige observed. In this case the reentrance gets reduced, but does not
ordered phase. The sign persistence is fixgu-a0.66 for the three  disappear. The arrow shows the line along which the critical expo-
cases. nents were evaluated.
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undesirable correlations that end up requiring large finite-
size corrections in the evaluation of critical exponents. In
order to handle just one control variable, we carried out this
evaluation along a line approximately perpendicular to the
phase boundary, using the parametrizatiprs0.6+ 0.2g,
€=0.572+0.064 for the threshold map and=0.92
+0.05y, €=0.5949+0.011g for the density map. In both
cases the control parametergs

Starting with the basic postulation for the free energy at
equilibrium FSS(without irrelevant operatoys

F(T,B,L)=L 9 (|T-TZ|LY BLEIY) (4.1

it is possible to get the FSS relations for the different ther-
modynamic quantities, interpretingyas the control param-
eter. In particular, it can be shown that the fourth order cu-
mulant U, the magnetizatiorM, and the susceptibilityy
behave in the critical region as

UL(9)=0(LY(g-g.)), (4.2)
M (g)=L " A"M(L™(g—g.)), (4.3
xL(9)=L""x(L¥(g—g.)), (4.4

where g, is the critical point in the thermodynamic limit.
(For a general review of FSS theory see R&8].)

In order to find the critical point we used the standard
crossing-of-cumulants method, implemented via minimiza-
tion of the sum of the square distances between the cumulant
curves for different lattice sizes. These curves were fitted

lar lattices for(a) disordered phasee&0.6), (b) ordered phasee( using polynomial approximations, choosing the degree of the

- . 2
=0.9). Here we do not have a second disordered phase. The sig!ynomial that gives the lowegt” for degree of freedom.
persistence is fixed gt=0.66 for both cases. Once a value fog, is obtained, the critical exponents have

been evaluated using the relatidris14]

phase boundaries shift towards smaller values of the cou-
pling. We then may assert that the appearance of antiferro-
magnetic clusters is strongly correlated with the reentrance.

FIG. 8. Snapshots for the threshold map wlitk 48 in triangu-

ﬂgUL(gc)N Ll/V!

The results mentioned up to now clarify why the map called dglogM (ge)~L*",

f5 in Ref.[8] did not show any PT: it had a sign persistence

of 0.6 on a square lattice, and in this regime the reentrance dglogM(P(go) ~LY",

may allow one to cover the full 0-1 coupling range without

crossing the phase bounddiyig. 3). M (gc)~L A" (4.5)
IV. EVALUATION OF CRITICAL EXPONENTS M(LS)(gc)”Li’BIV

Up to now we have seen that the behavior of the phase
boundaries for the stochastic maps we are proposing, and for
}he chgotlc GMH map, are very similar. To mgke the equ'va.'whereM(Ls)(g): m and the derivatives were evalu-
ence in the global behavior between these different dynami- . 2
cal systems complete, that is, to find if they belong in theatecj using the be_$tn _th_e sense of lowest” for degree of
same universality class, we need to evaluate the critical e){_reedonj polynomial fitting for each curve.
ponents for the stochastic maps, and compare with the ones
found for the MH and similar map,7]. We evaluated the A. Critical exponents for the threshold map
critical exponents, B, andy for the threshold and the den-  For this map we worked with eight lattice sizes, fram
sity maps in triangular lattices. This geometry was chosen-34 to | =120. Here we got
over the square one, on account of previous indications that

the presence of antiferromagnetic domains may introduce 0.=0.4816717),

xu(go)~L"",
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FIG. 10. Data collapse for the cumulant curves in the threshold
map. The critical coupling found wag.=0.481 7@4). Thedotted
line is the polynomial fitting.

0.15 - -

XL(9)=L""(Fo+FiL ™).

L-1v0A(g,)
ag

0.1 .—t_t_t._t__:___{,___l_____ -
r 1 WhereA,, A1, By, etc. are nonuniversal real parameters and
| w is a nonuniversal effective correction exponent that is dif-

il S SRR SERK SRERR + --] ferent for each critical exponent. For the threshold map, we
pos Lo Lo Lo by 1 found B/v=0.1257(43), with a correction exponeni
40 60 80 100 120 _
(b) L =9.4(5).

We also verified the results farusing the collapse of the
FIG. 9. Direct measure of the critical exponentor the thresh-  different cumulant curves. This was accomplished by fitting
old map.(a) Log-log graph, solid lines correspond e=0.921, and  g]| the different values o, (g) to the universal form given
the dotted line gives the 2D Ising value<1). (b) The same graph Eq. (4.2, using a nonlinear minimization of?. The re-
in a linear scale. Scaling corrections for this case were not necesslts are shown in Fig. 10; the values obtained for the non-
sary. linear parameters of the fit werg,=0.4817@4), and v

, ) =0.9247), completely consistent with the ones given be-
which  translates into p=0.696334(34) and € fgre.

=0.602827(11) for the particular point we choose in the
phase boundary. It was found thatand y/v did not need
finite-size corrections for the range lofvalues used, whilg
did. In Fig. 9 we show, as an example, the direct measure of For this case we worked with seven lattice sizes, flom
the correlation length exponentfor the threshold map. The =34 toL =104; we followed the same protocol of that in the
values obtained were=0.921(22), andy/v=1.741(11). In  threshold map. The critical point was located at
the B/v case, scale corrections had to be introdulced3].
Although FSS allows for an infinity of correction exponents, 0.=0.4471428),
associated with the irrelevant couplings of the model, it is
customary to use just one effective exponent, associated witthich givesp=0.942 357(14) and=0.599 8193). We are
the dominant corrections, since this is usually the reliabilitypresenting the example of the direct measuresfor Fig. 11.
limit for numerical fitting. For the quantities that we are con- From this graph we observe that it is necessary to implement
sidering here, the critical behaviors with effective correctionsscale corrections in this case, although the deviation from the
are given as straight line is mild. The critical exponen8 and v were
obtained without the inclusion of scale corrections. The val-
dgU (Do) =L (Ag+AL™?), ues obtained were=1.027(8) with an effective correction
exponentw=5.7(9), B/v=0.1255(20), and/v=1.7499).
dg logM  (go)=LY(By+B,L ™), As for the previous map, we checked the results using a
direct collapse of the cumulant curves. The values obtained
Jgl0gM (g ) =LY"(Co+C1L™), for the nonlinear parameters in the fit werg,
=0447 15(18), which is in perfect agreement with the value
given above, and=0.981(11). It should be noticed that no

B. Critical exponents for the density map

~ | —Blv )
Mi(ge)=L (Do+ Dyl ), (4.6 finite-size corrections were used for the collapse, which ex-
© _alv Y plains the disagreement between this value and that obtained
M7 (ge) =L P"(Eq+E4L™°), before. The results of this collapse are given in Fig. 12.
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V. CONCLUSIONS
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TABLE I. Critical exponents for the threshold map, the density
map, and the MH map with simultaneous updating. We include the
exponents of the two-dimensional Ising model and the scale correc-
tion exponentgwhere neededand the hyperscaling relations.

Threshold map Density map MH map] 2D Ising

v 0.92122) 1.02748)  0.88718) 1.0
w, 5.7(9) 1.5(4)

Blv 0.125743)  0.125520) 0.1254)  0.125
wp 9.4(5) 9(4)

ylv 1.74111) 1.7499)  1.748100 175
w, 5.7(5)

(2B+vy)lv  1.99414)  2.00098) 2.002) 2

B 0.115848)  0.128923) 0.11¥5  0.125
y 1.60334) 1.79617) 1.554) 1.75

Moreover, the uniformity of the invariant distributions may
actually not be an important factor, if we take into account
that other maps, that are not piecewise linear, have already
been located in the same universality clgkd]. It is impor-

tant to notice that the stochastic map we are considering is
not simply a noisy version of the chaotic one. Here we have
eliminated most of the deterministic nature of the dynamics,
and only a Markovian feature is retained in that the signs of
the variables are correlated.

We have also studied the reentrance phenomena found in
these models, and have provided evidence of how strongly
correlated they are with the appearance of antiferromagnetic
clusters. These clusters are a consequence of simultaneous
updating in a square lattice, where, for large couplings, half
the lattice “decides” the future state of the other half, and

In this work we have shown a stochastic map that reprovice versa. However, the results obtained show that even

duces quite C|ose|y the behavior found for a ContinuousyVhen antiferromagnetism is frustrated, some reentrance may
piecewise-linear odd-symmetric chaotic map, when it is emlemain. Therefore, it is clear that there should be some other
bedded in diffusively coupled regular lattices. In particular,factors that contribute to this behavior. As a possibility, it
the critical behavior is fundamentally the same. This relationmay happen that the ferromagnetic effect of the diffusive
appears even though the only similarities between the tw&0upling saturates foe very close to 1, independently of

models are that both have uniform invariant distributions,which type of lattice geometry one uses. o
sign persistencies have been made equal. Results for the critical exponents are summarized in Table

and that their

0.64

0.62

0.6

0.58

0.56

0.54

_I T T I T T T T I T T T T | T T T IA l
— & L =104 ‘(‘:
= m L =288 .
I & L=72 E
o v L =60 -
- L =50 —
- <); L =42 ﬁ‘g -
roL=34 Kﬁ ]
3 &g E
- o .
o ]
“I 1 1 I 1 1 1 1 I 1 1 1 1 | 1 1 1 1 |_
-1 0 1 2
(g—g L™

I, where the exponents for the MH map were taken from Ref.
[1]. Our results for the stochastic lattice are consistent with
those of the chaotic deterministic lattice, within error bars,
and clearly outside of the 2D Ising class. The resultsgbr

and for y/v are consistent with those of the Ising model.
This supports the proposal, made by Magtcl, that what

we are finding here is a weak form of the 2D Ising univer-
sality class. Something quite unexpected is the fact that one
of the stochastic maps, the density map, seems to fall into the
Ising class. The value far is a bit above 1, but the error bar

is not short enough as to make credible a non-Ising behavior.
Besides, we should remember that this exponent needed
some finite-size corrections. Accepting then that the behavior
of this map is Ising-like, a possible explanation is that, since
stochasticity has been increased in the density cam-
pared with the threshold ohesome correlations may have

FIG. 12. Data collapse for the cumulant curves in the densitypeen erased, inducing in this way an effect similar to that of
map. The critical coupling found wag,=0.447 15(18). The dotted nonsimultaneous updating, thus driving the dynamics into
line is the polynomial fitting.

the Ising class.
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So at this moment we are left with the following puzzle: detailed balance and a Gibbsian measure, from where one
there is enough evidence, given in Ref§,7] and in this  can infer a Hamiltonian whose couplings flow in the manner
paper, about the existence of dynamical systems that undergxpected for the Ising class. This result then would require
continuous phase transitions under diffusive coupling in 2Dthe normal Ising exponents for the MH model, a thing that as
space, with critical exponents close but not quite equal tqve have mentioned just does not happen. One may perhaps
those of the 2D Ising model. This in spite of the fact that theagssume that, since coarse graining is the starting point in
symmetries of the models lead one to expect full compliancggolf's work, his results imply that some far-reaching finite

with the Ising universality class. However, not all maps withsjze corrections are at play. The results gathered up to now
these characteristics fall outside of the Ising class, as showgl not give any indication of how this may be.

by the case of the density map explored here. It seems there-
fore that something in the deterministic part of the dynamics
induces extra correlations that push the model out of the
Ising class. At the moment this remains unexplained.

There is a recent result that makes this result even more We wish to thank H. Chatéor his useful comments. F.S.
puzzling. It has been shown by Egélf5] that under coarse would like to thank the CONACyT. This work was sup-
graining, the diffusive lattice with local MH dynamics shows ported by CONACyT through Grant No. 28383E.
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