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Stochastic analog to phase transitions in chaotic coupled map lattices

Francisco Sastre* and Gabriel Pe´rez†

Departamento de Fı´sica Aplicada, Centro de Investigacio´n y de Estudios Avanzados del Instituto Polite´cnico Nacional, Unidad Me´rida,
Apartado Postal 73 ‘‘Cordemex,’’ 97310 Me´rida, Yucatán, Mexico

~Received 22 December 2000; published 14 June 2001!

Stochastic dynamical systems are shown to exhibit the same order-disorder phase transitions that have been
found in chaotic map lattices. Phase diagrams are obtained for diffusively coupled two-dimensional~2D!
lattices, using two stochastic maps and a chaotic one, for both square and triangular geometries, with simul-
taneous updating. We show how the use of triangular geometry reduces~or even eliminates! the reentrant
behavior found in the phase diagrams for the square geometry. This is attributed to the elimination~via
frustration! of the antiferromagnetic clusters common to simultaneous updating of square lattices. We also
evaluate the critical exponents for the stochastic maps in the triangular lattices. The strong similarities in the
phase diagrams and the consistency between the critical exponents of one stochastic map and the chaotic one,
evaluated in an early work by Marcqet al. @Phys. Rev. Lett.77, 4003~1996!; Phys. Rev. E55, 2606~1997!#
suggest that the ‘‘sign-persistence,’’ defined as the probability that the local map keeps the sign of the local
variable in one iteration, plays a fundamental role in the presence of continuous phase transitions in coupled
map lattices, and is a basic ingredient for models that belong to this weak Ising universality. However, the fact
that the second stochastic map, which has an extremely simple local dynamics, seems to fall in the 2D Ising
universality class, suggests that some minimal local complexity is also needed to generate the specific corre-
lations that end up giving non-Ising critical behavior.

DOI: 10.1103/PhysRevE.64.016207 PACS number~s!: 05.45.Ra, 05.70.Fh, 64.60.Cn
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I. INTRODUCTION

The study of extended chaotic systems, defined by
sembles of interacting simple elements whose local dyn
ics are chaotic, is one of the most exciting new areas
nonlinear dynamics. Within this field one of the problem
that has been attracting much interest lately is the appear
of nontrivial collective behavior in coupled map lattice
~CMLs!, beginning with the collective oscillations found b
Chatéand Manneville@2# in lattices of diffusively coupled
cellular automata. CMLs are the simplest models for
study of spatiotemporal chaos, and can be used to simu
the cooperative behavior found in many biological, comp
tational, physical, chemical, and even social systems@3#.
Some types of chaotic CMLs present order-disorder tra
tions with the same phenomenology found in continuo
phase transitions~PTs! in equilibrium statistical mechanics
In particular, a very interesting example was found by Mil
and Huse~MH! @4#, for two-dimensional~2D! lattices of
odd-symmetric piecewise-linear chaotic maps, with diffus
coupling. These transitions occur between two globally c
otic states, and the largest Lyapunov exponent remains
tinuous in the critical point@5#. The symmetry and dimen
sionality of the local maps are those of the Ising model, a
using very general arguments, an Ising-like behavior w
expected@6#. In fact, this order-disorder PT was initially lo
cated in the 2D Ising universality class, but extensive cal
lations for this and similar models@1# indicate that the tran-
sition does not fit entirely there, the main difference being
the critical exponent for the correlation length (n), whose
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value was found to be 0.887~18! @number~s! between paren-
theses corresponds to the uncertainty in the last digit~s! of
the quantity#, clearly differing from the Ising value (n51).
These results were obtained with simultaneous updating
lattice sites, while an asynchronous updating of the sa
model recovered the critical exponents of the 2D Ising cla
Recent evaluations of critical exponents on Toon cellu
automata lattices@7# have also found non-Ising exponent
giving n50.85(2), but with discrepancies in the ratiosg/n
andb/n with respect to both the 2D Ising model and the M
lattice model.

It seems obvious that for this order-disorder PT, the d
fusive coupling is the factor that gives the global order, wh
the chaotic local evolution provides for the disorder. In
sense, one takes the diffusion as analogous to the ferrom
netic coupling in an Ising model, while the local chaos a
as a source of ‘‘thermal fluctuations’’~a temperature!. The
picture however, is not really as simple. Maps that are si
lar to that used by Miller and Huse may or may not pres
continuous PTs@1,8,9#, and moreover, two different map
with the same local Lyapunov exponent~i.e., with the same
degree of chaoticity! present different critical points@9#. It is
clear, therefore, that an extra factor is needed to unders
the origin of these PTs. Looking again to the MH dynami
one finds that two of its fundamental characteristics are
it has a uniform invariant distribution, and that it shows
tendency for the local variable to keep its sign under ite
tion. Following this lead, in this work we show an alternati
way of studying local dynamics that gives continuous PTs
diffusive lattices, by making them completely stochast
preserving the mentioned behavior. Specifically, we use
chastic processes with uniform invariant distributions, a
with a certain probability that the local variable keeps t
same sign in the next time iteration. We call this quantity t
©2001 The American Physical Society07-1
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FRANCISCO SASTRE AND GABRIEL PE´REZ PHYSICAL REVIEW E64 016207
sign-persistenceof the map. We then implement numeric
simulations of the CMLs with local stochastic maps, our g
being to compare both systems~deterministic and stochastic!
in order to check how close to each other their behaviors
in other words, to see if they fall in the same universal
class. We made this comparison through the constructio
the phase diagram for three CMLs, one chaotic, named
generalized Miller-Huse~GMH! map, and two stochastic
named threshold and density maps, and the evaluatio
critical exponents for the stochastic maps~the critical expo-
nents for the MH map and similar models were evaluated
Ref. @1#!. Here we implement finite-size scaling~FSS! analy-
sis of the results in the standard way used in equilibri
statistical mechanics.

Additionally, we want to cover two additional details i
the behavior of the MH model, details that were pointed
originally by Marcqet al. @1#. First, after growing from zero
on crossing the critical coupling, the order parameter start
decrease as the coupling approaches its maximum value
and second, antiferromagnetic looking domains appear in
lattice. These two features go clearly against what one
gn

m

t
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pects of a diffusive system, since after all the coupling
intended to be of a ferromagnetic nature, and is assume
homogenize the state of the lattice. We will put these effe
in the context of a reentrance behavior found for both
chaotic and the stochastic models. We will show that
introduction of frustration, via the use of triangular lattice
reduces reentrance and even eliminates it completely for
case.

This article is organized as follows. In Sec. II we give t
definitions of the two stochastic maps, we also give the d
nitions of the equivalent thermodynamics variables. Th
are the same ones given in previous works@1,9#. In Sec. III
we present the phase diagrams for square and triangula
tices in the GMH, threshold, and density maps. Section IV
dedicated to FSS and the results of the critical exponents
the stochastic maps. In Sec. V we discuss our results.

II. MODELS AND DEFINITIONS

In a previous work @9# we introduced ageneralized
Miller-Huse map
f~y!5H 2 y/~a21!1~a11!/~a21! for 21<y<2a,

y/a for 2a,y,a,

2 y/~a21!2~a11!/~a21! for 21<y<2a,

~2.1!
t

he
from where one gets the MH map settinga51/3. This fam-
ily of maps has uniform invariant distributions, and the si
persistence can be easily evaluated, giving

p5
11a

2
. ~2.2!

The first stochastic map introduced, thethreshold map, is
closely related to the GMH map and is defined by

f~y!5H sgn~y!r for uyu,p,

2sgn~y!r for uyu.p, ~2.3!

where the sign persistencep is the internal parameter, andr
is a uniformly distributed random number within@0,1#. Fig-
ure 1 shows the GMH and the threshold maps with the sa
value ofp. The second stochastic map used, thedensity map,
is defined by

f~y!5H sgn~y!r with probability p,

2sgn~y!r with probability 12p, ~2.4!

where we have assigned directly the sign persistence in
dynamics~see Fig. 2!.

The 2D coupled system was implemented using the
crete evolution rule given by
e

he

s-

yr
t115~12e!f~yr

t !1
e

Nn
(̂
r8&

f~yr8
t

!; ~2.5!

here r indicates position in the lattice,t is the iteration
counter~the discrete time!, ^r 8& indicates sum over neares
neighbors,Nn is the number of nearest neighbors, andf(y)
is the local map~GMH, threshold, or density!. This gives us
the desired simultaneous updating of all lattice sites. T
instantaneous order parametermL

t is defined by

FIG. 1. GMH ~solid line! and threshold map~points!. In both
cases we havep50.825.
7-2
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STOCHASTIC ANALOG TO PHASE TRANSITIONS IN . . . PHYSICAL REVIEW E64 016207
mL
t 5

1

N (
r

yr
t , ~2.6!

whereN5L2 is the number of lattice sites, and the sum
over all lattice sites. The order parameter is obtained by
ing, after letting a suitable transient time pass, the time
erage of the last quantity

ML5^mL&5
1

T (
t51

T

umt~L !u. ~2.7!

HereT is the time interval over which the average is take
The susceptibility used in this work is defined by

xL5N^~ umL
t u2ML!2&. ~2.8!

Finally, for the evaluation of critical points and other use
we also compute the fourth order cumulant@10#

UL512
ML

(4)

3~ML
(2)!2

, ~2.9!

whereML
(n)5^mL

n&. As the control parameter~the coupling
parameter, the sign persistence, or a combination of b
quantities! tends to a critical point, one finds thatU(L)
→U* , whereU* is independent of the size of the syste
This gives a good estimator for the critical points, just
getting the crossing point for different lattice sizes. We w
discuss more about cumulant properties in Sec. IV.

III. PHASE DIAGRAMS AND REENTRANCES

We begin by computing the complete phase diagrams
the GMH and the threshold maps, in square lattices, a
function of the couplinge and the sign persistencep. We
worked with relatively small lattices~up to L540), which
gave us a good relation between accuracy and computat
cost. These phase diagrams are shown in Fig. 3, and
almost exact coincidence for most of the parameter spac
evident, substantiating our assertion that a fundamental
tor for the appearance of MH-type PTs in diffusive chao
lattices is the sign persistence. In fact, the coincidence in

FIG. 2. Density map withp50.825.
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phase diagrams is such that one is tempted to assert tha
deterministic nature of the MH map is irrelevant for its co
lective behavior: all that matters is the distribution of signs
gives on iteration. However, results obtained for the den
map indicate that this would be an oversimplification, as w
be discussed in the conclusions. The region where this c
cidence is lost is that of very largep values, where we can go
from a disordered phase to an ordered one, and then ba
a disordered phase, as we increasee. We also observe this
behavior in the phase diagram for the density map~Fig. 4!,
although the ordered phase appears for larger values op.
This reentrance seems to be due to the development of s
antiferromagnetic domains, as can be observed in Fig
where we show snapshots for three points~one for each re-
gion, with L548) for the threshold map. One can clear
observe the presence of antiferromagnetic domains in
second and third snapshots. A similar behavior is observe
the GMH map. This means then that already in the orde
phase some antiferromagnetic clustering starts to deve
and that this phenomenon becomes so prevalent that it
stroys the ferromagnetic order. It is important to remark t

FIG. 3. Phase diagram for square lattices. Filled marks and
ted line are for the threshold map; open marks and solid line are
the GMH map. In both systems a reentrance can be observed
large values of the coupling. Lines are splines for visualization.

FIG. 4. Phase diagram for the density map in square lattice
behavior analogous to that of the GMH and threshold maps ca
observed. In this case the phase transition is present for large va
of p.
7-3
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FRANCISCO SASTRE AND GABRIEL PE´REZ PHYSICAL REVIEW E64 016207
FIG. 5. Snapshots for the threshold map withL548 in square
lattices for ~a! disordered phase (e50.6), ~b! ordered phase and
(e50.875) and~c! second disordered phase (e50.975). We can
observe that small antiferromagnetic domains begin to appear in
ordered phase. The sign persistence is fixed atp50.66 for the three
cases.
01620
for the systems considered here a fully developed antife
magnetic phase has not been found. These antiferromag
clusters crop in other ferromagnetic models, when simu
neously updated@11#; a fascinating anecdotical report of th
problem was given recently by Hayes@12#.

In a similar way to what happens in the Ising and oth
equilibrium models, one can discourage the appearanc
antiferromagnetic behavior via frustration. To see what eff
this has on the reentrance, we have calculated the phase
grams for the three maps in triangular lattices. The res
obtained are shown in Figs. 6 and 7, where we can obs
that, as expected, the reentrance disappears for the thre
map~snapshots for this system are shown in Fig. 8!. There is
a very significant reduction of the reentrance in the GM
and the density maps. Again, we get almost perfect coin
dence in the phase boundary between the GMH and
threshold maps, except for the high coupling region. As
normal with an increase on the coordination of the latti

he

FIG. 6. Phase diagram for triangular lattices. Filled marks a
dotted line are for the threshold map; open marks and solid line
for the GMH map. The reentrance disappears for the threshold m
and almost disappears for the GMH map. Lines are splines
visualization. The arrow shows the line along which the critic
exponents were evaluated.

FIG. 7. Phase diagram for the density map in triangular lattic
A behavior analogous to that of the GMH and threshold maps
be observed. In this case the reentrance gets reduced, but doe
disappear. The arrow shows the line along which the critical ex
nents were evaluated.
7-4
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STOCHASTIC ANALOG TO PHASE TRANSITIONS IN . . . PHYSICAL REVIEW E64 016207
phase boundaries shift towards smaller values of the c
pling. We then may assert that the appearance of antife
magnetic clusters is strongly correlated with the reentran
The results mentioned up to now clarify why the map cal
f 5 in Ref. @8# did not show any PT: it had a sign persisten
of 0.6 on a square lattice, and in this regime the reentra
may allow one to cover the full 0-1 coupling range witho
crossing the phase boundary~Fig. 3!.

IV. EVALUATION OF CRITICAL EXPONENTS

Up to now we have seen that the behavior of the ph
boundaries for the stochastic maps we are proposing, an
the chaotic GMH map, are very similar. To make the equi
lence in the global behavior between these different dyna
cal systems complete, that is, to find if they belong in
same universality class, we need to evaluate the critical
ponents for the stochastic maps, and compare with the o
found for the MH and similar maps@1,7#. We evaluated the
critical exponentsn, b, andg for the threshold and the den
sity maps in triangular lattices. This geometry was cho
over the square one, on account of previous indications
the presence of antiferromagnetic domains may introd

FIG. 8. Snapshots for the threshold map withL548 in triangu-
lar lattices for~a! disordered phase (e50.6), ~b! ordered phase (e
50.9). Here we do not have a second disordered phase. The
persistence is fixed atp50.66 for both cases.
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undesirable correlations that end up requiring large fin
size corrections in the evaluation of critical exponents.
order to handle just one control variable, we carried out t
evaluation along a line approximately perpendicular to
phase boundary, using the parametrizationsp50.610.2g,
e50.57210.064g for the threshold map andp50.92
10.05g, e50.594910.011g for the density map. In both
cases the control parameter isg.

Starting with the basic postulation for the free energy
equilibrium FSS~without irrelevant operators!

F~T,B,L !5L2dF̂~ uT2Tc
`uL1/n,BL(b1g)/n!, ~4.1!

it is possible to get the FSS relations for the different th
modynamic quantities, interpretingg as the control param
eter. In particular, it can be shown that the fourth order
mulant U, the magnetizationM, and the susceptibilityx
behave in the critical region as

UL~g!5Û„L1/n~g2gc!…, ~4.2!

ML~g!5L2b/nM̂ „L1/n~g2gc!…, ~4.3!

xL~g!5Lg/nx̂„L1/n~g2gc!…, ~4.4!

where gc is the critical point in the thermodynamic limit
~For a general review of FSS theory see Ref.@13#.!

In order to find the critical point we used the standa
crossing-of-cumulants method, implemented via minimiz
tion of the sum of the square distances between the cumu
curves for different lattice sizes. These curves were fit
using polynomial approximations, choosing the degree of
polynomial that gives the lowestx2 for degree of freedom.
Once a value forgc is obtained, the critical exponents hav
been evaluated using the relations@1,14#

]gUL~gc!;L1/n,

]g logML~gc!;L1/n,

]g logML
(2)~gc!;L1/n,

ML~gc!;L2b/n ~4.5!

ML
(s)~gc!;L2b/n

xL~gc!;Lg/n,

whereML
(s)(g)5AML

(2)(g), and the derivatives were evalu
ated using the best~in the sense of lowestx2 for degree of
freedom! polynomial fitting for each curve.

A. Critical exponents for the threshold map

For this map we worked with eight lattice sizes, fromL
534 to L5120. Here we got

gc50.481 67~17!,

ign
7-5
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FRANCISCO SASTRE AND GABRIEL PE´REZ PHYSICAL REVIEW E64 016207
which translates into p50.696 334(34) and e
50.602 827(11) for the particular point we choose in t
phase boundary. It was found thatn and g/n did not need
finite-size corrections for the range ofL values used, whileb
did. In Fig. 9 we show, as an example, the direct measur
the correlation length exponentn for the threshold map. The
values obtained weren50.921(22), andg/n51.741(11). In
the b/n case, scale corrections had to be introduced@1,13#.
Although FSS allows for an infinity of correction exponen
associated with the irrelevant couplings of the model, it
customary to use just one effective exponent, associated
the dominant corrections, since this is usually the reliabi
limit for numerical fitting. For the quantities that we are co
sidering here, the critical behaviors with effective correctio
are given as

]gUL~gc!.L1/n~A01A1L2v!,

]g logML~gc!.L1/n~B01B1L2v!,

]g logML
(2)~gc!.L1/n~C01C1L2v!,

ML~gc!.L2b/n~D01D1L2v!, ~4.6!

ML
(s)~gc!.L2b/n~E01E1L2v!,

FIG. 9. Direct measure of the critical exponentn for the thresh-
old map.~a! Log-log graph, solid lines correspond ton50.921, and
the dotted line gives the 2D Ising value (n51). ~b! The same graph
in a linear scale. Scaling corrections for this case were not ne
sary.
01620
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xL~gc!.Lg/n~F01F1L2v!.

WhereA0 , A1 , B0, etc. are nonuniversal real parameters a
v is a nonuniversal effective correction exponent that is d
ferent for each critical exponent. For the threshold map,
found b/n50.1257(43), with a correction exponentv
59.4(5).

We also verified the results forn using the collapse of the
different cumulant curves. This was accomplished by fitti
all the different values ofUL(g) to the universal form given
in Eq. ~4.2!, using a nonlinear minimization ofx2. The re-
sults are shown in Fig. 10; the values obtained for the n
linear parameters of the fit weregc50.481 70(4), and n
50.926(7), completely consistent with the ones given b
fore.

B. Critical exponents for the density map

For this case we worked with seven lattice sizes, fromL
534 toL5104; we followed the same protocol of that in th
threshold map. The critical point was located at

gc50.447 14~28!,

which givesp50.942 357(14) ande50.599 819(3). We are
presenting the example of the direct measure forn in Fig. 11.
From this graph we observe that it is necessary to implem
scale corrections in this case, although the deviation from
straight line is mild. The critical exponentsb and g were
obtained without the inclusion of scale corrections. The v
ues obtained weren51.027(8) with an effective correction
exponentv55.7(9),b/n50.1255(20), andg/n51.749(9).

As for the previous map, we checked the results usin
direct collapse of the cumulant curves. The values obtai
for the nonlinear parameters in the fit weregc
50447 15(18), which is in perfect agreement with the va
given above, andn50.981(11). It should be noticed that n
finite-size corrections were used for the collapse, which
plains the disagreement between this value and that obta
before. The results of this collapse are given in Fig. 12.

s-

FIG. 10. Data collapse for the cumulant curves in the thresh
map. The critical coupling found wasgc50.481 70(4). Thedotted
line is the polynomial fitting.
7-6
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V. CONCLUSIONS

In this work we have shown a stochastic map that rep
duces quite closely the behavior found for a continuo
piecewise-linear odd-symmetric chaotic map, when it is e
bedded in diffusively coupled regular lattices. In particul
the critical behavior is fundamentally the same. This relat
appears even though the only similarities between the
models are that both have uniform invariant distributio
and that their sign persistencies have been made eq

FIG. 11. Direct measure of the critical exponentn for the den-
sity map.~a! Log-log graph, withn51.024.~b! The same graph in
a linear scale. Here the scale corrections are necessary.

FIG. 12. Data collapse for the cumulant curves in the den
map. The critical coupling found wasgc50.447 15(18). The dotted
line is the polynomial fitting.
01620
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Moreover, the uniformity of the invariant distributions ma
actually not be an important factor, if we take into accou
that other maps, that are not piecewise linear, have alre
been located in the same universality class@1,7#. It is impor-
tant to notice that the stochastic map we are considerin
not simply a noisy version of the chaotic one. Here we ha
eliminated most of the deterministic nature of the dynami
and only a Markovian feature is retained in that the signs
the variables are correlated.

We have also studied the reentrance phenomena foun
these models, and have provided evidence of how stron
correlated they are with the appearance of antiferromagn
clusters. These clusters are a consequence of simultan
updating in a square lattice, where, for large couplings, h
the lattice ‘‘decides’’ the future state of the other half, a
vice versa. However, the results obtained show that e
when antiferromagnetism is frustrated, some reentrance
remain. Therefore, it is clear that there should be some o
factors that contribute to this behavior. As a possibility,
may happen that the ferromagnetic effect of the diffus
coupling saturates fore very close to 1, independently o
which type of lattice geometry one uses.

Results for the critical exponents are summarized in Ta
I, where the exponents for the MH map were taken from R
@1#. Our results for the stochastic lattice are consistent w
those of the chaotic deterministic lattice, within error ba
and clearly outside of the 2D Ising class. The results forb/n
and for g/n are consistent with those of the Ising mode
This supports the proposal, made by Marcqet al., that what
we are finding here is a weak form of the 2D Ising unive
sality class. Something quite unexpected is the fact that
of the stochastic maps, the density map, seems to fall into
Ising class. The value forn is a bit above 1, but the error ba
is not short enough as to make credible a non-Ising behav
Besides, we should remember that this exponent nee
some finite-size corrections. Accepting then that the beha
of this map is Ising-like, a possible explanation is that, sin
stochasticity has been increased in the density map~com-
pared with the threshold one!, some correlations may hav
been erased, inducing in this way an effect similar to tha
nonsimultaneous updating, thus driving the dynamics i
the Ising class.

y

TABLE I. Critical exponents for the threshold map, the dens
map, and the MH map with simultaneous updating. We include
exponents of the two-dimensional Ising model and the scale cor
tion exponents~where needed! and the hyperscaling relations.

Threshold map Density map MH map@1# 2D Ising

n 0.921~22! 1.027~8! 0.887~18! 1.0
vn 5.7~9! 1.5~4!

b/n 0.1257~43! 0.1255~20! 0.125~4! 0.125
vb 9.4~5! 9~4!

g/n 1.741~11! 1.749~9! 1.748~10! 1.75
vg 5.7~5!

(2b1g)/n 1.994~14! 2.000~98! 2.00~2! 2
b 0.1158~48! 0.1289~23! 0.111~5! 0.125
g 1.603~34! 1.796~17! 1.55~4! 1.75
7-7
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So at this moment we are left with the following puzzl
there is enough evidence, given in Refs.@1,7# and in this
paper, about the existence of dynamical systems that und
continuous phase transitions under diffusive coupling in
space, with critical exponents close but not quite equa
those of the 2D Ising model. This in spite of the fact that t
symmetries of the models lead one to expect full complia
with the Ising universality class. However, not all maps w
these characteristics fall outside of the Ising class, as sh
by the case of the density map explored here. It seems th
fore that something in the deterministic part of the dynam
induces extra correlations that push the model out of
Ising class. At the moment this remains unexplained.

There is a recent result that makes this result even m
puzzling. It has been shown by Egolf@15# that under coarse
graining, the diffusive lattice with local MH dynamics show
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detailed balance and a Gibbsian measure, from where
can infer a Hamiltonian whose couplings flow in the mann
expected for the Ising class. This result then would requ
the normal Ising exponents for the MH model, a thing that
we have mentioned just does not happen. One may per
assume that, since coarse graining is the starting poin
Egolf’s work, his results imply that some far-reaching fini
size corrections are at play. The results gathered up to
do not give any indication of how this may be.
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